Predictive Data Mining for Delinquency Modeling

نویسندگان

  • T. L. Bharatheesh
  • S. Sitharama Iyengar
چکیده

Predictive data mining is the process of automatically creating a classification model from a set of examples, called the training set, which belongs to a set of classes. Once a model is created, it can be used to automatically predict the class of other unclassified examples. Some datasets encountered in real life applications have skewed class distributions. Many predictive modeling systems are not prepared to induce a classifier that accurately classifies the minority class under such situation. In this work, an attempt has been made to build the predictive model for delinquency in credit cards users, using the state of art methods. The success of the model is defined in different terms than the ones found in literature. Different sampling schemes are evaluated and a modified naïve Bayes classifier is used as classifier. The results are encouraging and it is proposed to compare the prototype with ensemble of models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

146-2008: Using SAS® Enterprise MinerTM to Prescribe a Pre-Screen Mailing

The Objective (Target) of this project was to prescribe a pre-screen test mailing program using a combination of a “Risk Score” and Specific Credit Bureau Attributes (CBA). CBA variables chosen were predictive of accounts that generate revenue in the Top 50% of the Company’s customer portfolio, have acceptable delinquency levels and have a “Risk Score” less than what is normally acceptable. A r...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Predictive Modeling for Life Insurance

The use of advanced data mining techniques to improve decision making has already taken root in property and casualty insurance as well as in many other industries [1, 2]. However, the application of such techniques for more objective, consistent and optimal decision making in the life insurance industry is still in a nascent stage. This article will describe ways data mining and multivariate a...

متن کامل

Self-similarity for data mining and predictive modeling: a case study for network data

Recently there are a handful study and research on observing self-similarity and fractals in natural structures and scientific database such as traffic data from networks. However, there are few works on employing such information for predictive modeling, data mining and knowledge discovery. In this paper we study, analyze our experiments and observation of self-similar structure embedded in Ne...

متن کامل

Local spatial biclustering and prediction of urban juvenile delinquency and recidivism

Using a novel database, ProDES, developed by the Crime and Justice Research Center at Temple University, this article investigates the relationship between spatial characteristics and juvenile delinquency and recidivism—the proportion of delinquents who commit crimes following completion of a court-ordered program—in Philadelphia, PA. ProDES was originally a case-based sample, where the cases w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004